

MEIC 2020/2021

Data Administration in Information Systems 2nd semester

Lab 10: Performance Monitoring

IST/DEI Page 1 of 6

In this lab class we will approach the following topics related to performance monitoring:

1. Performance monitoring and performance indicators
2. Isolating slow running queries using the SQL Profiler
3. Saving and analyzing the trace as a database table
4. Generating a trace for tuning
5. Reorganizing and rebuilding indexes
6. Using of the query governor configuration option
7. Check files auto growth frequency

1. Performance monitoring and indicators

Performance monitoring should check that the performance-influencing database parameters
are correctly set and if they are not, it should point to where the problems are. Monitoring can
be made by extracting and analyzing the relevant performance indicators (counters, gauges and
details of the internal DBMS activities).

One way to measure performance indicators in SQL Server is to use the Performance Monitor
available on Windows. Open the application and click Performance > Monitoring Tools >
Performance Monitor. The tool will be monitoring your system using its default counters (e.g.
%Processor Time). We can add more counters by right clicking on any area on the right side and
selecting Add Counters. Under Available Counters, you will find several counters related to SQL
Server, such as:

• SQLServer:Access Methods: Full scans and index searches per second
• SQLServer:Buffer Manager: Page writes and reads per second
• SQLServer:Databases: Transactions per second
• SQLServer:Locks: Number of deadlocks and timeouts per second
• SQLServer:Transactions: Longest running transaction time
• SQLServer:Wait Statistics: Lock waits
• etc.

Alternatively, commands such as SET STATISTICS TIME ON, SET STATISTICS IO ON, DBCC
showcontig, stored procedures such as master.dbo.sp_lock, or system views such as
master.dbo.sysperfinfo can provide detailed results, or results on a per-query basis.

• Profiling query executions: SET STATISTICS TIME ON displays the number of milliseconds

required to parse, compile, and execute each statement. SET STATISTICS IO ON causes SQL
Server to display information regarding the disk activity generated by T-SQL statements.

Data Administration in Information Systems

IST/DEI Page 2 of 6

• Disk subsystem: DBCC showcontig shows information related to disk fragmentation. The scan
density and avg page density values are the most important information to look at. Values of
90% and above are OK. The higher the numbers, the lower the amount of fragmentation.

• Lock monitor: the sp_lock stored procedure uses information from the syslockinfo view to

display information on all granted, converting, and waiting lock requests. Executing it returns
the fields spid, dbid, objid, indid, type, resource, mode, and status. The spid is the process
identification number, which identifies your connection to SQL Server. To find out which user
is associated with that spid, execute the stored procedure sp_who and pass the spid as a
parameter to the procedure. The dbid is the identifier of the database the lock is occurring in;
you can find it in the sysdatabases view in the master database. The objid field indicates what
object is being locked. To view this object, you can query the sysobjects view in the master
database for that specific objid. The type field is the type of lock (e.g. TABLE, PAGE or ROW),
mode indicates the lock requester's lock mode, and status indicates the lock request status.

2. Isolating a slow running query using SQL Profiler

Queries that take a long time to run are obvious candidates for optimization. In this exercise, we
will use the SQL Server Profiler to isolate a poorly performing query within a query batch. We will
start by defining a trace to capture query performance information:

a) Start SQL Server Profiler from Microsoft SQL Server Tools.

b) Click the New Trace button and connect to the Database Engine.

c) In the General tab:

• In Trace name write Trace1
• In the Use the template drop-down, choose Standard (Default)
• Check the Save to File box and save the file as: C:\Temp\Trace1.trc

d) Change to the Events Selection tab. We are going to change the type of events that SQL

Profiler will capture:
• In the Security Audit category, uncheck Audit Login and Audit Logout.
• In the Stored Procedures category, uncheck RPC:Completed.
• Click the Show all events checkbox.
• Expand the Performance category, and select Showplan All and Showplan XML.
• Uncheck Show all events to see only the events that have been selected for this trace.

e) Still in the Events Selection tab:

• Click the Show all columns checkbox.
• Right-click the DatabaseName column heading and select Edit Column Filter.
• Expand the option Like and type in AdventureWorks2017. Click OK. This will filter out all

activity except for the selected events in the AdventureWorks2017 database.

Data Administration in Information Systems

IST/DEI Page 3 of 6

f) Click Run. The trace begins.

Now, to isolate a poorly performing query in a batch:

g) Start SQL Server Management Studio and connect to the Database Engine.

h) From the menu bar, select File > Open > File and open the lab9.sql file from the previous lab.

i) Click Execute to execute the entire script.

j) Once the script completes, go back to SQL Profiler and stop the trace by clicking the Stop

Selected Trace button in the toolbar.

k) Scroll to the right to find the Duration column. Only some events have a duration.

l) Find the event with the greatest value in the Duration column.

m) Select that row, and you should see the query in the lower pane.

n) Click the preceding row (Showplan XML) and you should see the execution plan.

3. Saving and analyzing the trace as a database table

a) In SQL Server Profiler, click the Properties button in the toolbar.

b) Select the Save to table checkbox, and connect to the Database Engine.

c) In the Destination Table dialog:

• Accept the default database (master)
• Accept the default schema (dbo)
• Accept the default table (Trace1)
• Click OK

d) Click Run to begin the trace.

e) Switch to SQL Server Management Studio, and again Execute the entire script lab09.sql.

f) Once the script completes, stop the trace in SQL Profiler.

g) In SQL Server Management Studio, expand Databases > System Databases > master > Tables.

h) Locate the dbo.Trace1 table. If needed, right-click Tables and select Refresh.

Data Administration in Information Systems

IST/DEI Page 4 of 6

i) Right-click the dbo.Trace1 table, and Select Top 1000 Rows to see the table contents.

j) Right-click the master database, and select New Query.

k) Execute the following query to sort the trace records according to duration:

SELECT *
FROM dbo.Trace1
WHERE EventClass = 12
ORDER BY Duration DESC;

l) Compare the value of Duration shown in SQL Server Profiler to the value of Duration in the
dbo.Trace1 table. What do you conclude? 1

4. Generating a trace for tuning

a) In SQL Server Profiler, Click the New Trace button and connect to the Database Engine.

b) In the General tab:

• In Trace name write Trace2
• In the Use the template drop-down, choose Tuning
• Select the Save to table checkbox, and connect to the Database Engine.

c) In the Destination Table dialog:
• Accept the default database (master)
• Accept the default schema (dbo)
• Accept the default table (Trace2)
• Click OK

o) In the Events Selection tab:

• In the Stored Procedures category, uncheck RPC:Completed and SP:StmtCompleted.
• (Leave only the TSQL category with SQL:BatchCompleted checked.)
• Click the Show all columns checkbox.
• Right-click the DatabaseName column heading and select Edit Column Filter.
• Expand the option Like and type in AdventureWorks2017. Click OK.

d) Click Run to begin the trace.

e) Switch to SQL Server Management Studio, and Execute the script lab09.sql.

f) Once the script completes, stop the trace in SQL Profiler.

g) Open the Database Engine Tuning Advisor and connect to the Database Engine.

1 In SQL Server Profiler, in the menu Tools > Options, there is an option for showing Duration in microseconds.

Data Administration in Information Systems

IST/DEI Page 5 of 6

h) In Workload, select Table and click the browse button on the right side of the text box.

i) In the Select Workload Table dialog, choose the master database, the dbo schema, and the

Trace2 table. Press OK.

j) In Database for workload analysis, select AdventureWorks2017.

k) Also, check the AdventureWorks2017 database under Select databases and tables to tune.

l) Click Start Analysis on the toolbar.

m) Once the analysis is complete, switch to the Reports tab and select the Statement cost report.

n) Locate the query that you have previously identified as having the longest duration, and check

the Performance Improvement that can be expected with the DTA recommendations.

o) Switch to the report Statement-index relations report (recommended). Locate the same
query and check if DTA is recommending new indexes for that query (with prefix _dta_index).

5. Reorganizing and rebuilding indexes

Regarding indexes, SQL Server automatically maintains indexes whenever insert, update, or
delete operations are made to the underlying data. Over time, these modifications can cause the
information in the index to become scattered in the database (i.e., fragmented).

The first step in deciding which defragmentation method to use is to analyze the index to
determine the degree of fragmentation. By using the system function
sys.dm_db_index_physical_stats, you can detect fragmentation in a specific index, all indexes on
a table or indexed view, all indexes in a database, or all indexes in all databases.

For this purpose, try the following query in SQL Server Management Studio:

USE AdventureWorks2017;
SELECT indexstats.index_id,
 dbschemas.name as 'Schema',
 dbtables.name as 'Table',i.name as 'index',
 avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats(DB_ID(N'AdventureWorks2017'), NULL, NULL,
NULL, NULL) AS indexstats

JOIN sys.indexes AS i ON indexstats.object_id = i.object_id AND
indexstats.index_id = i.index_id
JOIN sys.tables dbtables on dbtables.object_id = indexstats.object_id
JOIN sys.schemas dbschemas on dbtables.schema_id = dbschemas.schema_id

ORDER BY indexstats.avg_fragmentation_in_percent DESC;

Data Administration in Information Systems

IST/DEI Page 6 of 6

After the degree of fragmentation is known, the following table shows the best method to correct
the fragmentation: 2

avg_fragmentation_in_percent value Corrective statement

> 5% and < = 30% ALTER INDEX REORGANIZE

> 30% ALTER INDEX REBUILD WITH (ONLINE = ON)

6. Using of the query governor configuration option

Regarding duration, the query governor configuration option can prevent long-running queries
from executing, thus preventing system resources from being consumed. By default, the query
governor configuration option allows all queries to execute, no matter how long they take.
However, the query governor can be set to the maximum number of seconds that all queries for
all connections, or just the queries for a specific connection, are allowed to execute. Because
the query governor is based on estimated query cost, rather than actual elapsed time, it does not
have any run-time overhead. It also stops long-running queries before they start, rather than
running them until some predefined limit is hit.

The instruction below illustrates the use of the query governor option on a per connection basis.
If you use sp_configure stored procedure to change the value of query governor cost limit, the
changed value is server-wide. The value refers to the estimated elapsed time, in seconds, required
to execute a query.

SET QUERY_GOVERNOR_COST_LIMIT value

If you specify a nonzero, nonnegative value, the query governor disallows execution of any query
that has an estimated cost exceeding that value. Specifying 0 (the default) for this option turns
off the query governor. In this case, all queries are allowed to run.

7. Check files auto growth frequency

Finally, one type of operation that can decrease the performance of databases is the automatic
growth of files (remember the FILEGROWTH parameter from Lab 1). A good practice to follow is
to check regularly if the current configurations for auto growth are appropriate. One way to do
this is to check if the database files are growing too often.

In SQL Server Profiler, in the Events Selection, under the Database category, you can find the
events Data File Auto Grow and Log File Auto Grow that can be used to monitor file growth.

2 https://docs.microsoft.com/en-us/sql/relational-databases/indexes/reorganize-and-rebuild-indexes

